
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

domenica 21 aprile 13

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

Const correctness

domenica 21 aprile 13

What is const correctness ?

• It is a semantic constraint, enforced by the
compiler, to avoid that a particular object marked
as const should not be modified

• const can be used in various scopes:

• outside of classes at global/namespace scope:

const double AspectRatio = 1.653;
// much better than a C style define:
#define ASPECT_RATIO 1.653

domenica 21 aprile 13

Class constants
• It’s usable for static objects at file, function and

block level

• It’s usable also for class specific constants, e.g. for
static and non-static data members:

class VideoFrame {
private:
 static const int PALFrameRate;
 ...
};
const int VideoFrame::PALFrameRate = 25;

domenica 21 aprile 13

Pointers and constancy

• We can specify that a pointer is constant, that
the data pointed to is constant, that both are
constant (or neither):

char greeting[] = “Hello”;
char* p = greeting; // nothing is constant

const char* p = greeting; //non-const pointer
 // const data
char* const p = greeting; // const pointer
 // non-const data
const char* const p = greeting; // everything is const

domenica 21 aprile 13

Pointers and constancy - cont.

• If const appears to the left of * then what is
pointed to is constant, if it’s on the right then
the pointer is constant:

const char* const p means that p is a
constant pointer to constant chars

• according to this writing char const* p
is the same of const char* p

domenica 21 aprile 13

References and constancy

• You can not change an alias, i.e. you can’t
reassign a reference to a different object, so:

Fred& const x makes no sense (it’s the
same thing of Fred& x), however:

const Fred& x is OK: you can’t change
the Fred object using the x reference.

domenica 21 aprile 13

Functions and constancy
• The most powerful use of const is its

application to function declarations: we can
refer to function return value, function
parameters and (for member functions) to the
function itself

• Helps in reducing errors, e.g. you are passing an
object as parameter using a reference/pointer
and do not want to have it modified:

void foo(const bar& b);
// b can’t be modified
// use const params whenever possible

domenica 21 aprile 13

const return value
• Using a const return value reduces errors in client

code, e.g.

class Rational { //...};
const Rational operator*(const Rational&
lhs, const Rational& rhs);

Rational a,b,c;
// let’s say we missed an =
// to make a comparison...
(a*b)=c; // it’s now illegal thanks to
 // const return value !

domenica 21 aprile 13

const return value - cont.

• When returning a reference probably it’s better to
return it as constant or it may be used to modify the
referenced object:
class Person {
public:
 string& badGetName() const; // returns a reference to _name
 //...
private:
 string _name;
};

void myCode(const Person& p) {
 p.badGetName() = “Igor”; // can change the _name
 // attribute of Person
}

domenica 21 aprile 13

const member functions

• The purpose of const member functions is
to identify which functions can be invoked on
const objects.
These functions inspect and do not mutate an
object.

• NOTE: it’s possible to overload methods
that change only in constancy !
It’s useful if you need a method to inspect
and mutate with the same name

domenica 21 aprile 13

const member functions - cont.

class TextBlock {
public:
 const char& operator[](size_t pos) const {
 return text[pos];
 }
 char& operator[](size_t pos) { // has to be reference
 return text[pos]; // to be modifiable:
 } // C++ returns by value !
private:
 string text;
};

• this is useful when dealing with objects that are
passed as const references:
void print(const TextBlock& ctb, size_t pos) {
 cout << ctb[pos]; // calls the const version of []
};

domenica 21 aprile 13

const member functions - cont.

• C++ compilers implement bitwise constancy, but
we are interested in logical constancy, e.g. the
const reference return value seen before or we
may need to modify some data member within a
const method (declared mutable):

class TextBlock {
public:
 size_t length() const;
private:
 string text;
 mutable size_t _length;
 mutable bool isValidLenght;
};

size_t TextBlock::length()
const {
 if(!isValidLengt) {
 _length=text.size();
 isValidLength=true;
 }
 return _length;
}

domenica 21 aprile 13

const member functions - cont.

• To avoid code duplication between const and
non-const member functions that have the
same behaviour can be solved:

• putting common tasks in private methods
called by the two versions of the const/non-
const methods

• casting away constancy, with the non-const
method calling the const method (see later)

domenica 21 aprile 13

C++ and casting

domenica 21 aprile 13

C++ casting

• C++ casts are more restricted than C style
casts

• In general the lesser we cast the better: C++ is
a type safe language and casts subvert this
behaviour

• e.g. const_cast can be used to eliminate
code duplication: the benefits are worth the
risk

domenica 21 aprile 13

C and C++ casts
• C style casts, to cast an expression to be of type T:

• (T) expression

• T(expression)

• C++ style casts:

• const_cast<T>(expression)

• dynamic_cast<T>(expression)

• static_cast<T>(expression)

• reinterpret_cast<T>(expresison)

domenica 21 aprile 13

const_cast

• const_cast is used to cast away the
constness of an object

• It’s the only cast that can do it

domenica 21 aprile 13

static_cast
• static_cast forces implicit conversions,

such as non-const objects to const objects (as
seen in const/non-const methods), int to
double, void* to typed pointers, pointer-to-base
to pointer-to-derived (but no runtime check).

• it’s the most useful C++ style cast
int j = 41;
int v = 4;
float m = j/v; // m = 10
float d = static_cast<float>(j)/v; // d = 10.25
BaseClass* a = new DerivedClass();
static_cast<DerivedClass*>(a)->derivedClassMethod();

domenica 21 aprile 13

static_cast - cont.

• Prefer static_cast over C style cast, because
we get the type safe conversion of C++:

class MyClass : public MyBase {...};
class MyOtherStuff {...} ;
MyBase *pSomething; // filled somewhere
MyClass *pMyObject;
pMyObject = static_cast<MyClass*>(pSomething); // Safe; as
long as we checked
pMyObject = (MyClass*)(pSomething); // Same as static_cast<>

// Safe; as long as we checked but harder to read
MyOtherStuff *pOther;
pOther = static_cast<MyOtherStuff*>(pSomething); // Compiler
error: Can't convert
pOther = (MyOtherStuff*)(pSomething); // No compiler error.
// Same as reiterpret_cast<> and it's wrong!!!

domenica 21 aprile 13

const member functions

• Let’s review again how to avoid code
duplication between const and non-const
member functions...

• the non-const method calls the const
method and then cast away its constancy
with const_cast

domenica 21 aprile 13

const member functions - cont.

class TextBlock {
public:
 const char& operator[](size_t pos) const {
 //... checks over boundaries, etc.
 //...
 return text[pos];
 }
 char& operator[](size_t pos) {
 return
 const_cast<char&>(// take away constancy
 static_cast<const TextBlock&>(*this)[pos] // add constancy
);
 }
 //...
};

domenica 21 aprile 13

const member functions - cont.

class TextBlock {
public:
 const char& operator[](size_t pos) const {
 //... checks over boundaries, etc.
 //...
 return text[pos];
 }
 char& operator[](size_t pos) {
 return
 const_cast<char&>(// take away constancy
 static_cast<const TextBlock&>(*this)[pos] // add constancy
);
 }
 //...
};

First cast to const, to
call the const method,
then remove const-ness

domenica 21 aprile 13

dynamic_cast
• dynamic_cast performs safe (runtime check)

downcasting: i.e. determines if an object is of a
particular type in an inheritance hierarchy.

• it has a runtime cost depending on the
compiler implementation

class Window { //... };
class SpecialWindow :
public Window {
public:
 void blink();
};

Window* pW;
//...pW may point to whatever object
// in Window hierarchy

if(SpecialWindow*
pSW=dynamic_cast<SpecialWindow*>pw)
 pSW->blink();

domenica 21 aprile 13

reinterpret_cast
• reinterpret_cast is used for low-level

casts, e.g. to perform conversions between
unrelated types, like conversion between
unrelated pointers and references or conversion
between an integer and a pointer.

• It produces a value of a new type that has the
same bit pattern as its argument. It is useful to
cast pointers of a particular type into a void*
and subsequently back to the original type.

• may be perilous: we are asking the compiler to
trust us...

domenica 21 aprile 13

Credits

• These slides are (heavily) based on the
material of:

• Marshall Cline, C++ FAQ Lite

• Scott Meyers, “Effective C++”, 3rd edition,
Addison-Wesley

domenica 21 aprile 13

